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The nonlinear stability of a liquid film adjacent to a supersonic gas stream is 
investigated. The gas is assumed to exert a mean shear stress at  the liquid/gas 
interface which in turn establishes a linear mean velocity profile in the liquid. 
The analysis takes into account the pressure perturbation exerted by the gas on 
the liquid assuming the disturbed gas motion to be inviscid and the mean gas 
velocity profile to be uniform. The problem is formulated within the long wave 
approximation, and solutions are obtained for finite amplitude waves by using the 
method of multiple scales. The results predict the existence of finite amplitude 
periodic waves, in qualitative agreement with recent experimental observations. 

1. Introduction 
Recently, the equilibrium of the interface separating a liquid film from a super- 

sonic stream received considerable attention. This attention has been motivated 
in part by the problems of transpiration cooling and cross-hatched ablation on 
re-entry vehicles. Of particular importance in transpiration cooling is the estima- 
tion of the liquid removal by either entrainment or evaporation. To estimate the 
amount of liquid entrained by the gas, we need to determine the stability charac- 
teristics of the liquid/gas interface. To estimate the amount of liquid removal by 
evaporation, we need to know the roughness characteristics of the interface, that 
is, the interface wave characteristics such as the wavelength and amplitude. 
The present paper analyses the stability of the interface as well as the charac- 
teristics of any waves which might exist on this interface. 

The motion of the gas parallel to the liquid layer produces two important 
effects on the liquid. The first is the exertion of a mean shear stress at the liquid/ 
gas interface which in turn establishes a mean velocity profile in the liquid. The 
second is the exertion of pressure and shear stress perturbations on the liquid 
due to the appearance of waves on the interface. In  this paper, we investigate the 
effect of the pressure perturbation (Kelvin-Helmholtz mechanism) on the sta- 
bility of a liquid film having a linear mean velocity profile. 

Chang & Russell (1965) extended the classical Kelvin-Helmholtz model of two 
parallel, incompressible, inviscid streams by including compressibility in one 
fluid and viscosity in the other. They found that a liquid adjacent to a supersonic 
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stream is much more unstable than a liquid adjacent to a subsonic stream. In 
the subsonic case, the pressure perturbation is in anti-phase with the wave, while 
in the supersonic case, the pressure is in phase with wave slope, thus transferring 
the maximum energy to the interface. Nachtsheim (1970) extended the supersonic 
case of Chang & Russell by including the mean liquid velocity profile. Nayfeh & 
Saric (1971b) extended the work of Nachtsheim by including the effects of an 
arbitrary body force and a subsonic external flow; they also showed that a liquid 
layer adjacent to a supersonic stream is much more unstable than a liquid layer 
adjacent to a subsonic stream. Grabow & White (1972) extended the analysis of 
Nayfeh & Saric (1971 b )  by including the effect of a non-uniform gas flow. 

These linear results are in disagreement with the experimental observations 
of Gater & L’Ecuyer (1969), Saric &Marshall (1971), Gold, Otis & Schlier (1971), 
Marshall (1971), Saric, Nayfeh & Bordner (1973) and Gold (1973). In  the experi- 
ments of Gater & L’Ecuyer, the gas was nearly incompressible and turbulent, 
and the liquid layer was found to be unstable, the liquid drops entrained by the 
gas being observed. Gater & L’Ecuyer correlated the mass entrained with the 
entrainment group (q)4 /r ,  where q is the dynamic pressure of the gas and cr is the 
surface tension of the liquid. Gold and co-workers (1971, 1973) and Saric et al. 
(1973) maintained the same range of the entrainment group as Gater & L’Ecuyer 
but a t  supersonic speeds. They did not observe any entrainment. In fact, they 
found that the ratio of the r.m.s. wave amplitude to the mean thickness of the 
liquid layer decreases as the surface pressure increases. This implies that 
increasing the entrainment group is stabilizing, in contrast with the subsonic 
experiments. In  the experiments of Saric & Marshall (1971) and Marshall (1971), 
the gas motion was laminar and supersonic, and stable waves without entrain- 
ment were observed. Marshall (1971) measured the instantaneous depth of the 
liquid film by using an ‘end-effect’ capacitance gauge. Using this data we calcu- 
lated the ratio of the r.m.s. wave amplitude to the mean depth, and found that 
this ratio decreases as the shear increases. 

These experimental observations can be explained qualitatively by using the 
nonlinear theory of Nayfeh & Saric ( 1 9 7 1 ~ ) .  They analysed the nonlinear sta- 
bility of a quiescent viscous liquid film parallel to an inviscid compressible gas. 
In  the subsonic case, they found that unstable linear disturbances continue to be 
unstable in the nonlinear case; thus conditions exist for liquid entrainment by the 
gas, in qualitative agreement with the experiments of Gater & L’Ecuyer. In  the 
supersonic case, they found that stable linear disturbances are damped faster 
while unstable linear disturbances do not grow indefinitely but become steady 
periodic waves. Thus conditions for entrainment do not exist in this case, in quali- 
tative agreement with the experiments of Gold and Saric and their co-workers. 
However, the analytical results are limited because the model neglects all the 
viscous effects of the gas. I n  particular, it neglects the mean shear stress exerted 
by the gas on the liquid which in turn implies neglect of the mean liquid velocity 
profile. Moreover, it neglects the shear perturbations as well as the effects of the 
gas velocity profile. In  this paper, we remove the initial quiescent-liquid assump- 
tion by taking the liquid velocity profile (i.e. the mean shear stress exerted by the 
gas on the interface) into account. 
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FIGURE 1. Geometry of the mean flow. 

2. Problem formulation 
The liquid layer is assumed to be thin with one side adjacent to a solid boundary 

and the other side adjacent to a parallel gas stream. As was mentioned in the 
introduction, the gas has two important effects on the liquid. The first is the 
establishment of a velocity profile in the liquid due to the exertion of a mean shear 
stress at the gaslliquid interface. The second is the production of pressure and 
shear perturbations, due to the presence of waves on the interface. In  this paper, 
we study the effects of the liquid velocity profile as well as the pressure perturba- 
tion on the stability of the interface. The mean shear stress is calculated from the 
laminar or turbulent compressible flow past a flat plate, while the pressure 
perturbation is calculated from an inviscid uniform compressible flow past a 
wavy wall. This model therefore negleets the shear perturbation and the effect 
of the gas mean velocity gradient on the pressure perturbation. A discussion of 
this model is given in 5 5. 

A Cartesian co-ordinate system is introduced such that the P axis lies in the 
liquid/solid interface and the y" axis is normal to this interface and directed 
toward the liquid as shown in figure 1. The liquid motion is governed by the 
following equations: 

cz+zfi = 0 (2.1) 

(2.2) 

(2.3) 

ii;+tX2+cGg = -p-lp&+u(czz+ii Bir ) 2 

$+ + GGB = -p-1& + g + U(G= + Gm), 
where u, p and jT are the liquid kinematic viscosity, density and pressure, respec- 
tively, ii and v" are the velocities along the 2 and y" axes and g is the body force per 
unit mass directed from the liquid to the gas. 

We assume that, in the steady-state case, the gas exerts a shear stress ro on 
the gas/liquid interface, where 

with cf the coefficient of friction and the subscript g referring to the gas properties. 
Using the continuity of shear and pressure conditions at the undisturbed liquid/ 
gas interface, we find the following laminar steady-state solution in the liquid 

70 = CfP&, (2.4) 

layer : 
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FIGURE 2.  Geometry of wave motion. 

where Po is the gas pressure and h, is the undisturbed liquid depth. From (2.5), 
the liquid velocity at the interface is 

U, = rOh,/pv. (2.6) 

To study the stability of this steady-state configuration, we subject it to finite 
amplitude disturbances, Moreover, we introduce dimensionless variables accord- 
ing to 

x = 6k/ho y = jj/ho, a = ho/Z, h = $/ho, 

(2.7) I U = 77/UL, u+ U = ii/~,, v = fi/aU,, 

t = ZaU,/h,, p = P/pU$,  23 + P = $/pU;, 

where u and v are the liquid disturbance velocities, p is the liquid disturbance 
pressure, Z is a characteristic length (e.g. the wavelength of an initially sinusoidal 
disturbance), is the height of the disturbed interface and a is a dimensionless 
wavenumber. Substituting (2.7) into ( 2 . 1 ) - ( 2 . 3 )  and using (2.5) and (2.6), we 
obtain equations governing u, v and p .  By introducing the stream function 
$(x, y, t )  defined by 

we combine the liquid disturbance equations into 

(u, v) = (&/, - @ x )  

k", = "m4"+ (Y + @?/) $w?/ - +YYY @zl 

(2.8) 

- 2a2+xxv2/ + a3R[7bSxt+ (Y + $l/) @xxx - $x$xx, l -  w x x x x ,  (2.9) 

R = ULho/v: the liquid-layer Reynolds number. ( 2 . 1 0 )  
where 

Since the shear perturbation and gas mean velocity gradients are neglected 
in our model, the disturbed gas motion can be represented by the potential function 
UgZ@(x, Y ,  t ) ,  where the dimensionless function 0 is given by 

a,, - m2Qxx = N 2  [$(y - 1) pox + a; + q7) ( oxx + CD,,) + (2@., + o;) oxx 
+Z(l+o~)o~o~,+o~o=,], -co < x < co, a(h-1)  < Y < 00. (2.11) 

Here, h(x,t)  is the dimensionless height of the disturbed interface shown in 
figure 2,  M is the Mach number, y is the ratio of the gas specific heats, 

Y = (y"-h,)/Z and m2 = M2-1. 

In (2.11) and subsequent boundary conditions, we assume that the gas velocity 
is very much larger than the phase velocity so that the transient motion of the 
gas can be neglected. 
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The stability problem is completed by a specification of the boundary con- 
ditions. At the solid/liquid interface, the liquid velocity components u and v 
vanish; that is 

(2.12) 

Away from the gaslliquid interface, the gas disturbance vanishes upstream: 

$&, 0, t )  = $(x, 0, t )  = 0. 

@(x, Y,t)  = 0 upstream. (2.13) 

The conditions that the normal velocity is continuous across the interface and 
that the fluids move with the interface give the kinematic conditions 

ht+(h+$,)hx+$x = 0 at y = h, (2.14) 

ahx-@.,+ah,@., = 0 a t  Y = a(h-1). (2.15) 

With the neglect of the shear perturbation exerted by the gas on the disturbed 
gas/liquid interface, the continuity of tangential stresses across this interface 
demands that 

(@,y - a2qx2) ( 1  - a2h;) - 4a2$.,hx = 0 at y = h. (2 .16)  

The continuity of normal stresses across the liquidlgas interface demands that 

where 
x = a2Rp,UE/pULrn = a2/cf(M2- I)*, (2.18) 

T = Qho/pU;l2, G = gh,/Ui, (2.19) 

YKY-1) 
C, =-2 { [ 1 - Y - 1  -yj- M2 (2OZ + @; + @."y )I - 1 } , (2.20) 

2 

Y N  
with (T the liquid surface tension, C, the gas pressure perturbation coefficient, 
and T and G the reciprocal Weber and Froude numbers respectively. The liquid 
pressurep is eliminated from (2.17) by using the x-momentum equation 

(2.21) 
1 a 

Px = a $u,u - [$g,+ (Y + $,) $xu - ( 1  + kt,) $XI + jj @XX,. 

3. Solution for long waves 
A perturbation solution is sought for the case of a disturbance whose length 

scale 1 is large compared with the thickness ho; that is, a = ho/Z is small. For an 
initially sinusoidal disturbance with wavelength A, a = 2nh,/A. To accomplish 
this, we determine expansions for $ and @ from (2.9)-(2.13) and (2.15)-(2.21) 
and substitute the resulting expansion for $ in (2.14) to obtain an equation for 
h(x, t ) .  We assume expansions of the form 

@ = $o+a$l+ ..., p = a-lp-,+p,+ ..., a) = a@,+a20,+ ..., (3 .1 )  
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in (2.9), (2.11) and (2.12)-(2.20), equate coefficients of like powers of a and obtain 
the following : 

First-order problem 

$oyyyy = 0, $o = $@ = 0 at y = 0, $o, = 0 at y = h, (3.2),(3.3), (3.4) 

p-&, h, t )  = - (xm/R) @l,(X, 0 , t )  a t  Y = h, (3.5) 

P-1, = R-l $oyyy, @ l P P  -m2@1,, = 0, (3.61, (3.7) 

Q1 = 0 upstream, QlY = h, a t  Y = 0. (3.8)) (3.9) 

Second-order problem 

@lYYYY = R[lcroyy* + (Y + @oy) l c r 0 I Y Y  - @OYYY @or1 9 

po = - G ( h - i )  -Th, , - (~m/R)[@z, -~n22@2, ,+~@2,P+(h- l )<P1,YI  

Po, = R-l $lYY!/ - W o y t  -I- (Y + lcroy) @O,Y - (1 + @oyy) $ozI, 

(3.10) 

?,hl = ?,hl, = 0 at y = 0, ?,hlyy = 0 at y = ho (3.11),(3.12) 

at y = h, Y = 0, (3.13) 

(3.14) 

@ z Y P - ~ 2 @ 2 x z  = J f 2 [ ( Y + 1 )  @l,@l,+ (Y- 1) @ l X % T +  2@1J?@lXrI, (3.15) 

QZ = 0 upstream, (3.16) 

= h,@.,,- (h- 1) <DIFP a t  Y = 0. (3.17) 

$0 = a2y2 + a3Y3, (3.18) 

where a, = -QXm@,,,,(x, 0,  t ) ,  a2 = - 3hu3. (3.19) 

Substituting for $o into (3.10) and solving the resulting equation subject to 
the boundary conditions (3.1 1)-(3.14), we get 

$1 = R[b2y2 + b,y3 + &b4Y4 + #5y5 + #6y6 + &b7 y71, (3.20) 
where 

The solution of (3.2)-(3.6) is 

b, = - QWh, + Th,,, + (xm/R) [@Zz, - m2@1, @lrz + @lP @lZY + h, @lSY 

+ (h-  1) @lzxp]} a t  Y = 0,  

b, = b.c, = 3% + (1 + 2a2) az,, b6 = (1 + 2Gz) a,,, b7 = a3U3,, 

bz = - 3b3h-4b4h2-Qb5h3-&b6h4-&b7h5, (3.21) 

Since 

the boundary condition (2.14) gives 
W ( x ,  h)lPx = $&, Y)Jy=m + $& Y) h,lar=-h, 

ht + hh, + (apx) [$&, h) + a$-,@, h)1+ 0(a2) = 0. (3.22) 

Substituting for @o and $l into (3.22) gives 

ht+ hh, - ( a / a X )  {2U,h3 + aR[2b, h3 + &,h4 4- &(3U3t + (1 -I- 2Uz) U,h5 

+ &( 1 + 2 ~ 2 )  a3,h6 + #a3a3, h']} + O(a2) = 0. (3.23) 

Although (3.23) is valid for long wavelengths only, it is valid for all shapes and 

(3.24) 

amplitudes of disturbances. To simplify this equation, we let 

h(x, t )  = 1 +E?jqX, t ) ,  
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where E is a small but finite dimensionless quantity. With this assumption, (3.23) 
becomes 

rt+ r x  + +xm$1xxx + e[rrx + xm(r$lxx)xl+ e2xm(r2$1xx)x 
+ Q~"X~(r3$1xx)x + ER(Cyxx + Tllxxxx - Qxm$lxxxt- & % w $ l z x x x ) l  

+ +e"&XWPx) ( 4 2 X X  - m2$1x 4 1 X X  + $1P $lxP + rx$lxP + r $lxxY) 

+ c 4 w a / a 4  [r(Grx + Trxxx - %xm$1xxx - $xm$lxxt) - &xm$1xxrt 
- &xm$1xxllz -xmx $1xx$1xxx1+ E5@?0/ax)  [r($*xx - m2$1x $122 

+ 41P $lxP + Tx $ l X P  + r4lxxP)1+ e 5 w a / a 4  [r2(Gr, + Trxxx - a X 4 1 x x t  

-i%m$lxxx) - ~ X m r r , $ l x x - ~ X m r T x $ l x x - i ~ j X  m T$lxx$lxxx 

-3 40x 2 2 rX$l~X$lxxl+o('s) = ' 9  

37 *2 

4 

3 7  2 2 

(3.25) 
where @I = $1 = O(l) ,  (3.26) 

@2 = e2$2, $2 = O(1) (3.27) 

and a = € 3 4  & = O(1). (3.28) 

In  the next section, we consider the case of an initially sinusoidal disturbance. 

4. Initially sinusoidal case 

disturbance, we Fourier analyse the wave amplitude function 7 by letting 
To find an approximate solution to (3.25) subject to an initially sinusoidal 

q ( z , t )  = ~ ~ [ l l ~ ( t ) e ~ ~ + ? j ~ ( t ) e - ~ ~ ] .  (4.1) 
9&=l 

Then the solution of (3.7)-(3.9) is 

(4.2) 

The solution of (3.15)-(3.17) which will affect the solution of 7 to the order 

1 "  

m,=1 
E $ ~  = _ _  ,p[r,(t) eWxdY)+vn(t) e-iMx-mJ) I .  

indicated in (3.251 is 



(4.5) 

(4.6) 

To obtain an appropriate solution to (4.4)-(4.6), we use the method of multiple 

-f- 6(T - G+&jy+$&x2)72, - - z $ ~ ~ ~ ~ ]  * d71 + O(e4) = 0, 

dy3/dt + 3i[( 1 + 3 x )  r3 + (1 + 5x) vlv2 + x$]+ O(s2) = 0. 

scales (Nayfeh 1973) by letting 
5 

where 
T, = Emt. 

An alternative technique for obtaining the solution is presented in the appendix. 
Substituting (4.7) and (4.8) into (4.4)-(4.6) and equating coefficients of like 
powers of E ,  we obtain equations for qnm. The zeroth-order equations are 

a710 PTO + i(l+ 3x1 TlO = 0,  (4.9) 

~ 2 0 / ~ ~ 0 + 2 i ( l + ~ X ) 9 2 0  = --@ +2x)3&, (4.10) 

(4.11) a730/aTOf 3i(1 + 331) 730 = - 3i(1 f 531) 710720- 3ix7!0. 

The solution of (4.9) is 

910 = 40(G,T2,.**Y T5)exp[-i(l++x)ToI. (4.12) 

Then the particular solutions of (4.10) and (4.11) are 

720 = -- 1 + 2 x A ~ o e x p [ - 2 i ( l + ~ ~ ) T o ] ,  (4.13) 
235 

"+ 8x2A!o exp [ - 3i(  1 + Qx) To]. 
X 2  

730 = (4.14) 

In these solutions, as well as in the higher order solutions, the solutions of the 
homogeneous equations are omitted. 

The first-order problem becomes 

The particular solution of (4.15) contains a secular term of the form 

ToexP [-i(l ++x) To], 

A10 = All(T2, T3, T4, T5). 

which makes yll/qlo unbounded as To -+ co unless 

Consequently, 

711 = 721 = 731 = O.  

(4.15) 
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Proceeding to second order, we have 

- 24i~rioV10~20 - 3 ~ 6 0 V i o -  (4.17) 

Substituting for ql0 and qz0 from (4.12) and (4.13) into (4.16), we obtain 

where 
~2 = (1 + 731 + 4x2)/2x. 

Secular terms will be eliminated from r12 if 
(4.19) 

aAll/aT2 = ic2AllA~lAll. (4.20) 

Then the particular solutions of (4.16) and (4.17) are 

712 = 0, (4.21) 

3-452- 198~'-  1 1 2 ~ ~  
A3,,&, exp [ - 2i( 1 + Qx) To]. (4.22) 

r 2 2  = 48x3 

The third-order problem is then 

where 
c3 = -@R(T-G-&-x--&x~). 

Secular terms will be eliminated from 713 if 

aA11/aT3 = ~3A11. 

Then bhe particular solutions of (4.23) and (4.24) are 

713 = ' 9  

yz3 = Bx2 i (4~2: ( I  -$$ +&A[ - (7 + 82) T + (1 - 4x) G + g x  

(4.25) 

(4.26) 

(4.27) 

+ %x2 + Ax3]) A;, exp [ - 2i( 1 + Qx) To]. (4.28) 
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~ 1 4  = 0, aAl,/aT! = ~C&!~A&AII, (4.29) 

(4.30) where 

while analysis of the fifth-order equations gives 

where 

c4 = (1 + 8631 + 4 8 9 ~ ~  -I- 7 5 2 ~ ~  + l92x4)/32x3, 

715 = O ,  aA11/a[P6 = c5A11~11A11~  (4.31) 

c5 = (ZR/6x2) [ - (7 + 22x + 4x2) T + (1 - 2x - 20x2) G 
4 l ( 2 4 5  3 2 1  2 1 7 5 6  3 4 

3 0  4 x + T x  7 x - 7 x 11. (4*32) 

Letting A,, = +exp (ip) with real a and p, we find that a = a(T3, T5) and 

aa/aT3 = c3a, aa/aT5 = &,a3. 

Therefore, du/& = s3(c3 + f"c5a2) a, (4.33) 

+ (1-2x- 2 0 ~ ~ ) B + & ( 2 4 5 ~ + 3 2 1 ~ ~ ) - & ( 1 7 5 5 ~ ~ +  1072x4)]. (4.34) 

The stability of the interface depends on the signs and relative magnitudes of 
the coefficients c3 and c5. The linear motion is stable or unstable depending on 
whether c3 is negative or positive definite, while the nonlinear motion is stabilizing 
or destabilizing depending on whether c5 is negative or positive. Figure 3 shows 
the variation of c3 and c5 with the wavenumber a for specific liquid and gas flow 
conditions. The coefficient c3 is negative and the linear motion is stable except in 
the interval a2 < a < a,, where a, is the upper neutrally stable wavenumber. 
The exact numerical solution of the linear problem shows that a, w 3; ac is not 
shown in the figure because the Iong wave approximation is not valid for such 
an a. The coefficient c5 is positive only for al < a < a3. Thus, disturbances with 
wavenumbers less than al decay to zero, while disturbances with a > a3 become 
stable steady periodic waves with amplitude a, = ( - 4c3/s2c5)~, irrespective of 
their initial amplitudes. A disturbance with a in the interval [a1, a2] is stable or 
unstable depending on whether its initial amplitude is less or greater than the 
amplitude a, = ( - 4c3/a2c,)4; a disturbance with this amplitude is an unstable 
periodic wave. Finally, a11 disturbances with a in the interval [a,, a3] are unstable 
irrespective of their initial amplitudes. 

It should be mentioned that it is possible to have situations in which a3 < a2 
and situations in which cg is negative for all a. However, in all liquid and gas 
flow conditions, the present analysis predicts a range of wavenumbers for which 
unstable linear disturbances do not grow indefinitely but achieve steady periodic 
waves. 

5. Discussion 
The present analysis predicts the existence of finite amplitude steady periodic 

waves. This result is in qualitative agreement with the experiments of Saric 
& Marshall (1971), Gold et al. (1971), Marshall (1971), Saric et al. (1973) and 
Gold (1973). 
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FIGURE 3. The variation of c, (Qc, is linear growth rate), c6 (@a2c5 is nonlinear growth rate) 
and a, (steady-state amplitude) with the dimensionless wavenumber 01. The conditions in 
this case are for air over a liquid with the following characteristics: p = 1-0 g/ml. 
v = 0-7 cmZ/s, g = - 980 om/@, Q = 72 dynelcm, c,(M* - l)* = 0.003, M = 2.8, E = 0.5, 
R = 1 . 9 , ~  = 200 dyne/cm2. 

In spite of the success of the present model in predicting the existence of the 
experimentally observed periodic waves, it  cannot predict quantitatively the 
observed wavelength and its corresponding amplitude, Since disturbances with 
all wavelengths are possible in a given experiment, the observed wavelength is 
expected to correspond to the maximum steady-state amplitude a,. However, 
figures 3 and 4 show that a, decreases monotonically and it asymptotes to a 
minimum. as a + 00. Thus, the present model does not predict the observed wave- 
length because a, does not possess a relative maximum a t  a finite value of a: as 
is observed experimentally. 

Figure 4 shows that, at a given wavelength, the amplitude increases with the 
4 F L M  58 
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liquid Reynolds number R but decreases with the mean shear stress T. For large 
a, a, is independent of r and R. The variation of a, with R is in disagreement 
with the experimental observation that the ratio of the r.m.8. amplitude to the 
mean liquid depth decreases with increasing T or R (Gold et al. 1971; Gold 1973; 
Saric et al. 1973). 

The inability of the present theory to predict the observed wavelength 
and amplitude can be attributed to the assumptions used in calculating the 
stress perturbations. The disturbed gas motion was assumed to be inviscid 
and the gas mean velocity profile was assumed to be uniform. According to 
this model, the shear perturbation is neglected and the pressure perturbation 
is in phase with the wave slope. An order-of-magnitude analysis shows that 
the shear perturbation is 10 % of the pressure perturbation, and hence it can be 
neglected, However, including the gasfiscosity (boundary sublayer) and mean 
velocity profile decreases the magnitude and changes the phase of the pressure 
perturbation, which greatly affect the stability of the interface as shown by the 
linear analysis of Bordner, Nayfeh & Saric (1973) and the work of Inger (1971) 
on cross-hatching. Thus, to predict the observed wavelength and amplitude, the 
present model must be modified to include the gas mean velocity profile and the 
gas boundary sublayer. 

Thisworkwas supported by the Fluid Dynamics Program of the Office of Naval 
Research and the United States Atomic Energy Commission. The authors deeply 
appreciate the help of G. L. Bordner in checking the algebra. 

Appendix 

may use the following alternative approach. We let 
Rather than using the method of multiple scales to analyse (4.4)-(4.6), we 

vlt = iclyl +i&.~~?j,+ s3c37, + is4c47:7: + s55~~7:7~ + O(@), (A1) 
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73 = M + W), (A 3) 

where c1 = - (1 ++x). By substituting (A 1)-(A3) into (4.4)-(4.6) and equating 
coefficien.ts of equal powers of 8, we obtain algebraic equations for cl, b, and d,  
which can be solved in succession. The result is in full agreement with that ob- 
tained by using the method of multiple scales. 
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